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ABSTRACT
Video and image datasets can often be described by a small
number of parameters, even though each image usually con-
sists of hundreds or thousands of pixels. This observation is
often exploited in computer vision and pattern recognition
by the application of dimensionality reduction techniques.
In particular, there has been recent interest in the applica-
tion of a class of nonlinear dimensionality reduction algo-
rithms which assume that an image dataset has been sam-
pled from a manifold.

From this assumption, it follows that estimating the di-
mension of the manifold is the first step in analyzing an im-
age dataset. Typically, this estimate is obtained either by
using a priori knowledge, or by applying one of the various
statistical and geometrical methods available. Once an esti-
mate is obtained, it is used as a parameter for the nonlinear
dimensionality reduction algorithm.

In this paper, we consider reversing this approach. In-
stead of estimating the dimension of the manifold in order
to obtain a low dimensional representation, we consider pro-
ducing low dimensional representations in order to estimate
of the dimensionality of the manifold. By varying the di-
mensionality parameter, we obtain different low dimensional
representations of the original dataset. The dimension of the
best representation should then correspond to the actual di-
mension of the manifold.

In order to determine the best representation, we propose
a metric based on inversion. In particular, we propose that a
good representation should be invertible, in that we should
be able to reverse the reduction algorithm’s transformation
to obtain the original dataset. By coupling this metric with
any reduction algorithm, we can estimate the dimensionality
of an image manifold. We apply our method in the context of
locally linear embedding (LLE) and Isomap to six frequently
used examples and two image datasets.
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1. INTRODUCTION
Image and video datasets often contain scenes where only

a few things change. Thus, despite the fact that the datasets
themselves are very large and quite high dimensional, they
can often be described by only a few parameters [3], [13],
[25]. In fact, it is typically assumed that such datasets are
actually low dimensional manifolds embedded in a high di-
mensional space [14], [22].

It follows that the estimation of the dimensionality of such
manifolds is an important first step in their analysis. As
such, various algorithms for this purpose have been devel-
oped. These algorithms have been developed in the context
of statistics [8], [1], [15], [26] and geometry [5], [12], [6], [10].
The statistical approaches often focus on the use of vari-
ance in the dataset to determine intrinsic dimensionality,
while the geometric approaches often use topological con-
siderations based on the scaling of various quantities with
neighborhood size.

The next step in the analysis of an image manifold is
obtaining a low dimensional representation of the original
dataset. Recently, a number of nonlinear algorithms have
been developed to provide such representations. These al-
gorithms include kernel principal component analysis [21],
locally linear embedding (LLE) [19], [20], Isomap [24], [16]
Hessian LLE [7], Lapacian eigenmaps [2], semidefinite em-
bedding [28], and manifold charting [4], among others. Typ-
ically, these algorithms require as input a parameter speci-
fying the dimension of the resulting low dimensional repre-
sentation. Although some of the reduction algorithms pro-
vide their own estimates of the dimension, it is common
to provide this parameter using one of the aforementioned
estimation techniques.

In this paper, we consider reversing this standard ap-
proach. We consider analyzing the results of the dimen-
sionality algorithms in order to obtain an estimate of the
dimension of the manifold. In particular, we vary the di-
mensionality estimate parameter, and examine the resulting
low dimensional representations. These representations are
ranked according to a quality measure based on inversion.
In theory, the dimension of the best representation will cor-
respond to the actual dimension of the manifold.

Our technique is based on the idea that a dimensionality
reduction algorithm should preserve information on a global
scale, as measured using bijection. From this point of view
our method would be considered a geometric method, albeit
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global, in contrast to the geometric methods cited previously
(all local). In addition, it is unique in that it is designed
around the results of any available dimensionality reduction
algorithm. It both estimates image manifold dimension and
validates dimensionality reduction algorithms.

Our paper is organized as follows: in Section 2 we intro-
duce our quality measure, which is based on the inversion of
the reduced dimensional manifold; in Section 3 we provide
background on LLE and Isomap; in Section 4 we apply our
method in the context of LLE and Isomap; and in Section
5 we discuss our method and possible improvements.

2. INVERSION
Given an input dataset X = {X1, . . . , XN} ⊂ RD, dimen-

sionality reduction algorithms such as LLE and Isomap pro-
vide a reduced dimensional representation Y = {Y1, . . . YN} ⊂
Rd of the original dataset X. The underlying assumption be-
hind these algorithms is that X lies on a manifoldM embed-
ded in RD with intrinsic dimensionality d∗. The estimated
dimension d of d∗ is provided by the user as a parameter to
the algorithm.

In addition to the reduced dataset Y , these algorithms
implicitly provide a map f : X → Y . Although this map
is constructed to have any number of desirable properties,
such as local linearity (LLE) or geodesic distance preser-
vation (Isomap), it should from first principles also satisfy
more elementary properties, such as continuity, invertibility,
possibly distance preservation, et cetera.

We focus on the simplest of these properties: invertibility.
In particular, we expect that if Y is a good low dimensional
representation of X, then we should be able to go back and
forth from X to Y with no loss of information. Mathemat-
ically, we expect that an inverse function f−1 : Y → X
exists such that f−1(f(Xi)) = Xi for all i. Furthermore,
such an inverse should exist only if the estimated dimension
d is greater than or equal to the intrinsic dimension d∗. We
conclude that the existence of f−1 provides a way to assess
the intrinsic dimension d∗ of the manifold.

To determine the existence of f−1, we consider the squared
residual error rd =

∑
i ‖f

−1
d (fd(Xi)−Xi‖2, where fd : X →

Y is map produced by the dimensionality reduction algo-
rithm which depends on the estimate d of the intrinsic di-
mensionality, and f−1

d : Y → X is a proposed inverse to fd.
By examining the behavior of rd, which we call the inver-
sion error, we can determine the existence of f−1

d and then
estimate the actual dimension d∗ of the manifold M.

Obviously, we want to minimize rd over different values
of d. In theory, rd should be zero when d ≥ d∗ so that we
may determine d∗ by finding the smallest value of d such
that rd = 0. In practice, however, rd is seldom actually
zero, so that we determine d∗ by minimizing both d and
rd simultaneously. Although this notion could be formal-
ized further (by minimizing, for example, rd + d), we are at
present more interested in the general behavior of rd than a
precisely formulated optimization problem.

3. LLE & ISOMAP
We first consider our method in the context of LLE [19],

[20]. As mentioned previously, LLE is a method for nonlin-
ear dimensionality reduction which takes as input a dataset
X = {X1, . . . , XN} ⊂ RD, assumed to lie on a manifold M
with dimension d∗. The user of LLE must supply an es-

timate d of d∗, with which LLE constructs a dataset Y =
{Y1, . . . , YN} in Rd. LLE is most often illustrated by un-
rolling a two dimensional spiral, known as the Swiss roll,
into a rectangle. This and other examples will be examined
later and can be found in [19], [20].

Although the details of LLE can be found in [20], we pro-
vide a brief description in order to fully explain our method.
The first step in LLE is to solve for the location of each point
Xi ∈ RD in terms of its K nearest neighbors. This step is
performed simultaneously for every point Xi ∈ X by solving

min E(W ) =
∑

i ‖Xi −
∑

j WijXj‖2

subject to

{
Wij = 0 if Xi not neighbor Xj∑

j Wij = 1 for every i.

(1)

This problem has a closed form solution and assures not
only that each approximation Xi ≈

∑
j WijXj lies in the

subspace spanned by the K neighbors of Xi, but also that
the solution W is translationally invariant.

Once the reconstruction weights W have been obtained,
the next step in LLE is to perform a quadratic minimization.
This minimization is used to construct Y so that it is locally
similar to X. The minimization is in practice solved via an
eigenvalue problem, and the embedding is provided by the
first d eigenvectors (actually the second through (d + 1)st
eigenvectors), corresponding to the smallest eigenvalues.

The estimate d of the intrinsic dimension d∗ of the mani-
fold must be provided by the user of LLE. If d is an under-
estimate of d∗, we suffer a loss of information, and if d is an
overestimate of d∗, then LLE will include arbitrary dimen-
sions. These observations have been discussed in [17] and in
[20].

The method of [17], which we use as a benchmark com-
parison for our method, estimates the dimension of M by
examining the eigenvalues of the matrix used to solve the
quadratic minimization in the calculation of the LLE embed-
ding. The work in [17] shows that these eigenvalues should
be identically zero until the correct dimension is achieved,
so that we can estimate the dimension of M by counting
the number of zero eigenvalues. Unfortunately, however,
the work in [20] shows that these eigenvalues are largely
uninformative unless using very well behaved data sets.

In order to implement our method in the context of LLE,
and to compare our method with the method in [17], we
must provide fd and f−1

d . Fortunately, candidates for these
maps are provided by [20]. In particular, we can use the
maps defined by fd(U) =

∑
j wjYj , where the wj are the

reconstruction weights calculated from the K nearest neigh-
bors of U according to (1). Similarly, f−1

d (V ) =
∑

j wjXj ,

where now the wj are computed according to (1), but using
{Y1, . . . YN} in place of {X1, . . . , XN}.

Since the application of our method to LLE uses maps fd

and f−1
d that are specific to LLE, we also wanted to make

sure that our method would generalize to algorithms besides
LLE. We therefore applied our method to Isomap. Isomap is
another nonlinear dimensionality reduction algorithm which
takes as input a dataset X = {X1, . . . , XN} along with an
estimate d of the intrinsic dimension of X. Isomap then pro-
duces a reduced dimensional representation Y by preserving
corresponding geodesic distances in X. We do not give de-
tails except to say that Isomap first computes a graph based
representation of the geodesic distances in X and then uses
multi-dimensional scaling to produce Y . As an added ben-
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efit, the residual variance computed by multi-dimensional
scaling can be used to estimate the dimensionality of the
manifold in question See [24] for details.

For our purposes, it is enough to know that Isomap pro-
duces a map fd : X → Y for each estimate d of the dimen-
sion of X. In this case, we are taking fd to be the actual
correspondence between X and Y given by Isomap, where
X and d are Isomap’s inputs. We need only to produce an
additional function f−1

d so that we may compute the inver-
sion error rd. Although this map could be obtained using
any number of methods, for this example we use Support
Vector Regression [23].

Support Vector Regression (SVR) is a technique for non-
linear regression (necessary since we are using a nonlinear
reduction algorithm), which fits curves to data based on the
use of kernel functions and an ε-tolerance for errors. As with
Isomap, we do not describe SVR in much detail. We say only
that SVR is based on a quadratic programming problem
which uses the kernel functions to introduce nonlinearity.
The user of SVR must provide a kernel function with pa-
rameters appropriate to the dataset at hand as well as an ε-
tolerance. In the following examples (except for the lattice)
we used a Gaussian kernel k(Yi, Yj) = exp(−γ‖Yi − Yj‖2)
with γ = .5, and an ε-tolerance of .1. For the lattice we
used a linear kernel. In all cases, we used the SV M light

program [11] to train our SVRs.

4. EXAMPLES
We first tested our algorithm using LLE and compared

our results with the method in [17]. We begin with six
simple two-dimensional manifolds: a lattice, the Swiss roll,
the S-curve, the twin peaks, the punctured sphere, and a
sphere. The lattice consists of a 10x11 grid embedded in
the plane x + y + z = 0, the Swiss roll, S-curve, twin peaks
and punctured sphere were obtained from [19], [20], and the
sphere is a randomly sampled unit sphere. These manifolds
are shown in Figure 1(a).

For each of these manifolds, we computed both the LLE
(K=12) eigenvalues and the inversion error. With these
quantities, we compared our method with the method in
[17]. To facilitate this comparison, we plot normalized ver-
sions of these quantities vs. dimension, where the normal-
ization is performed by dividing each quantity by either the
largest eigenvalue or the largest inversion error. The results
are shown in Figure 1(b). These plots confirm the obser-
vations made in [20] about the spurious practical relation
between the number of zero eigenvalues and the intrinsic di-
mension of the manifold. The inversion error, on the other
hand, seems to perform well on every example. In particu-
lar, the error is high until the correct dimension is obtained,
at which point the error changes to near zero. (In the case
of the sphere we note that the actual dimension of the man-
ifold is two, although a sphere requires a three dimensional
embedding.)

We also tested our algorithm (again using LLE) on two
image datasets. The first dataset consists of images of B.
Frey’s face in various poses and was used in [19], [20] as an
example. We obtained the dataset from S. Roweis’ website
[18]. The dataset consists of 1965 grayscale images, each
containing 20 × 28 pixels. We scaled the face dataset so
that each pixel value was between -1 and 1. The second
dataset consists of images of handwritten “2”s and was ob-
tained from K. Weinberger’s website [27] in the context of

semidefinite embedding [28]. However, the original data was
obtained from the USPS data set of handwritten digits [9],
and we use it here because a similar dataset was used as
an example in [24]. The dataset consists of 638 grayscale
images, each containing 16× 16 pixels.

The results of our algorithm applied to the face and twos
datasets are shown in Figure 2. In the case of the faces data,
we used K = 11 and predicted an intrinsic dimension of 2
or 3. This is consistent with the results in [19], in which
the dimension is thought to be 2, as well as the results in
[4], where the dimension is thought to be 3. To provide a
further check of these predictions, we also produced visu-
alizations using Isomap (discussed next). In each of these
visualizations we used four rows of images, where the rows
correspond to the first through fourth (from top to bottom)
components produced by Isomap. In each row the images
were again ordered, this time by the value of the projec-
tion in the corresponding component. In the case of the
face dataset, we see that the first component corresponds to
pose (left to right), and the second component corresponds
to facial expression (smile to frown). It is more difficult to
interpret the third and fourth rows, in agreement with our
predictions.

When considering the twos dataset, we used K = 15 and
predicted an intrinsic dimension of 5. This prediction is
almost certainly too high, as our prediction using Isomap
(discussed next) was 3. In addition, looking at the Isomap
projections, we can see that the first component corresponds
to image height and width (from short and wide to tall
and narrow), while the second component corresponds to
a curly tail (from no tail to curly tail). Again the third
and fourth components are more difficult to interpret, al-
though the third component does exhibit a change in aspect
(the digit changes from pointing down and left to up and
left). In any case, ambiguity concerning the dimension of
this dataset was also found in [24], [28].

We next tested our dimensionality estimation technique
using Isomap and SVR on the same examples that we used
to test the LLE version of our method (we used the same
values for K that we used for LLE). The results of these tests
are shown in Figures 1(c) and 2. In Figure 1(c), we show
both our inversion error and the residual variance measure
provided by Isomap. The residual variance measure works
in the same way that our measure works, in that we can
estimate the dimensionality of the input by locating the di-
mension at which there is no longer any residual variance.
As can be seen in Figure 1(c), both the inversion error and
the residual variance identify correctly the dimension in each
of the examples.

In Figure 2, we see in the case of the face dataset that
our algorithm gives results similar to those obtained using
Isomap’s residual variance. Namely, both methods predict
an intrinsic dimension of 3. When considering the twos
dataset, however, our method gives a relatively clear indi-
cation that the intrinsic dimension is 3, while the residual
variance measure does not give a very clear prediction (pos-
sibly 4).

5. DISCUSSION
We have proposed a novel method for estimating the in-

trinsic dimensionality of an image manifold. Our method
is based on an a posteriori analysis of the results of a di-
mensionality reduction algorithm. In particular, we con-
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Figure 1: Six Examples. Here we show the results of our algorithm on six manifolds. In the first row (a) we
show the manifolds; in the second row (b) we show a normalized version of the LLE inversion error, along
with a normalized version of the first ten eigenvalues from LLE, both versus dimension; and in the third
row (c) we show a normalized version of the Isomap inversion error, along with the Isomap residual error
measure (also normalized).
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Figure 2: Image Manifolds. Here we show the re-
sults of our algorithm on two image manifolds. The
plots on the left show the results of our algorithm
on the faces data, and on the right for the twos
dataset. Above each plot we show images from the
Isomap representation. The first row contains or-
dered images from the first Isomap component, the
second row contains ordered images from the second
Isomap component, et cetera. In the plots below the
images we show the LLE inversion error, the Isomap
SVR inversion error, and the Isomap residual vari-
ance, all versus dimension.

sider how readily a reduced dimensional representation of a
manifold can be inverted. We have shown that the invert-
ibility of a reduced dimensional manifold is related to the
dimension of the original manifold, and that our method
performs well in practice. In the case of LLE, our method
performs better than the existing method, and in the case
of Isomap, we obtain similar or better estimates of the in-
trinsic dimensionality, comparing against Isomap’s residual
variance measure.

A particular strength of our method is its generality. Our
method does not depend on the particular algorithm used
to perform the dimensionality reduction, nor on the par-
ticular method used to discover the inverse mapping from
the reduced dimensional representation to the original man-
ifold. Of course, it is also true that our method depends on
the success of both the dimensionality reduction algorithm
and the method used to discover the inverse map. Indeed,
we saw in Figure 2 that our estimate of the dimensional-
ity changed from 5 to 3 for the twos dataset when we used
Isomap in place of LLE.

Although we have shown in principal that our method is
useful in estimating the intrinsic dimensionality of an im-
age manifold, there are additional questions which we have
not addressed. First, what method is best for learning the
inverse map f−1

d : Y → X? Here we should consider both
the quality of the final map f−1

d : Y → X, as well as the
speed of the algorithm used to learn the map. In our ex-
amples the LLE map was much faster than the SVR map,
although it could be argued that the SVR map was more
accurate, especially on the image datasets. Second, how can
we automate our method? The behavior of rd is sometimes
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difficult to interpret, and does not provide an automatic de-
termination of the dimension of the manifold. As suggested
previously, it may be helpful to consider alternate quantities
such as rd + d in place of rd. Finally, and more generally,
what other properties of a map produced by a dimensional-
ity reduction algorithm can we consider in an effort to either
estimate the dimensionality of a manifold or just generally
validate the reduced dimensional representation?
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